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Abstract A theoretical approach to homogeneity characterization by means of composition 
variance analysis is presented. A multiscale sampling image analysis is proposed to determine, 
using the model. balh the intensity and the scale of segregation in a binary particle mixture. 
The method is applied to characterize the homogeneity evolution of a WO,-NiO &n mixture 
with mixing time. The results show that the homogenization is controlled by a kind of diffusion 
process. 

1. Introduction 

Many fabrication processes of materials involve a powder-mixing step. Composite materials 
need prior mixing of the different phases. Some single-phase materials, which are obtained 
by solid-solid reaction, also require powder mixing. The quality of the resulting material 
is often highly related to the homogeneity of the initial mixture. Moreover, in the case of 
multiphase materials, the physical properties are intimately dependent on the homogeneity 
of the phase distribution in the final product. 

The classical mechanisms which are commonly invoked to describe powder homoge- 
nization in a shaking mixer are (Lacey 1954, Perry 1963) 

(I) convection of particle assemblies from one point to another of the mixer, 
(2) diffusion of individual particles from regions where they are in excess to regions 

where they are lacking and 
(3) shearing which breaks down the particle clumps appearing when cohesion forces 

between particles are important. 

In simple rotating drum mixers, the predominant mixing mechanism is diffusion (Fan 
ef ol 1970, Schofield 1970), and any convection must take place at the very beginning of 
the process. Such mixers exhibit good performance, as long as the diffeences in density 
and particle size of the two componenrs are not too large (Ashton and Valentin 1966, Fan 
ef ai 1970). 

Quantitative characterization of the mixing mechanisms can be made by analysing the 
composition distribution of samples taken uniformly in the mixture, and using the two 
parameters defined by Danckwerts (1953): 
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(1) the intensio of segregation which characterizes the amplitude of the composition 

(2) the scale ofsegregation which defines a mean correlation distance of the composition. 

Convection and shearing tend to reduce the scale of segregation, while diffusion tends 
to reduce the intensity of segregation. 

If the sampling interval of the composition measurements is sufficiently small, and the 
total length of the analysis sufficiently large, the intensity and scale of segregation can be 
obtained from the autocorrelation function of the composition (Danckwerts 1953, Schofield 
1970). However, analysis is very often performed on samples which are scattered over all 
the mixture, and only the composition variance is used to follow the mixing process (Lacey 
1943, Poole eta1 1964, Ashton and Valentin 1966, Cartilief and Mors 1986, Herbig 1986). 
Different expressions are used to derive an intensity of segregation, or rather a mixing index 
from the variance of the mixture composition (see Fan et a1 (1970) for a review). These 
parameters are generally dependent on the size of the samples used for the analysis. We 
shall now discuss this point and show that a multiscale variance analysis can be used to 
characterize both the intensity and the scale of segregation in a binary mixture of particles. 

differences in the mixture; 

2. Theoretical approach 

Lacey (1954) proposed a theoretical definition of the intensity of segregation, based on an 
analysis of the variance of the numerical fraction in a binary mixture of particles 1 and 2, 
with mean numerical fraction p of particles 1. His theory can be summarized as follows. 

Let us first consider samples uniformly taken out of the mixture, the samples consisting 
of one particle. The expectation value E1 and the variance U: of the number NI of particle I 
in a sample are given by 

Let us now consider samples consisting of N adjacent particles. If the mixture is 
homogeneous, they are equivalent to N independent samples of one particle, and the 
expectation value and variance of NI are deduced: 

E:(Ni) = Np (3) 

m G 2 0 " )  = Np(1 - P) (4) 

where the superscript asterisk refers to the ideal homogeneous mixture. 

the second moment by (Udny Yule and Kendall 1964) 
In fact, the distribution of N~-values is binomial with the first moment given by (3) and 

EE(N:) = Np + N(N - l ) p 2 .  (5) 

Lacey also expressed the variance of the unmixed material, i.e. samples are uniformly taken 
out of the pure phases before mixing, and the N particles are all exclusively of one phase 1 
or 2 

ON - - (  N - Np)'p + (Np)2(1 - p )  = N2p(l - p )  (6) 
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where the superscript zero refers to the unmixed material. He deduced a mixing index, 
which is in fact an intensity of segregation from the comparison of the variance U; of the 
actual mixture with the two limits uGz and U,$ 

The intensity of segregation is then zero for the homogeneous mixture, and unity for the 
unmixed material. 

For such a parameter to be an intrinsic characteristic of actual mixtures, it should be 
independent of the sample size N ,  whatever the degree of mixture, and not only for the 
homogeneous and unmixed limits. In order to discuss this point, a relationship between the 
variance and sample size of an inhomogeneous mixture is necessary. In the following, we 
shall consider a mixture with one characteristic scale S of segregation: for sample sizes 
much smaller than S, the composition variations inside the samples are small compared with 
the composition variation between the samples while, for sample sizes much larger than S, 
the composition variations between the samples are small compared with the composition 
variations inside the samples. The first case will be referred to as ‘large-scale segregation’, 
and the second as ‘small-scale segregation’, but it should he remembered that ‘small scale’ 
and ‘large scale’ are relative to an experimental reference, i.e. to the sample size. 

Lacey (1954) stated, without demonstration, that the intensity of segregation is 
independent of the sample size for ‘diffusive mixing’. By diffusive mixing, he means in fact 
that samples do not contain particle clumps characteristic of a convection mechanism. This 
is equivalent to the case of large-scale segregation. Carley-Macauly and Donald (1962) 
affirm that ‘it can be shown statistically’ that the residual variance U,$ - varies as 
N ( N  - 1) provided that the composition variations inside the samples can be neglected, 
which corresponds again to large-scale segregation. With such a variation, the intensity of 
segregation would be independent of the sample size, as U;’ and U$ are given by (4) and 
(6). 

On the other hand, the composition variance has been calculated when the sample size 
is larger than any scale of segregation in the mixture (Dukes 1951, Lacey 1954, De Chazal 
and Hung 1968). 

However, a more general relationship between the variance and sample size can be 
derived from a calculation of Bosanquet (a discussion in Rose 1959). for a mixture 
containing randomly distributed clumps of Np particles. The composition variation between 
clumps is characterized by the variance uz(p.) of the numerical fraction pc of particles 1 
in the clumps. The calculation assumes that the composition variance between samples 
can be decomposed into a sum of two independent contributions: the first is due to 
statistical variations and corresponds to the variance of a homogeneous mixture of identical 
composition: the second is related to the variance uz(pc) and is valid only in the two 
limiting cases of small-scale and large-scale segregation ( N  << Np or N >> N p ) :  

(8) 

With such an expression, the intensity of segregation, as defined by (7), would be a function 
of the sample size N .  In fact, we would like the intensity of segregation to be characteristic 
of the amplitude of the composition differences in the mixture, whatever the scale of 
segregation. Therefore, the variance of the mixture should be compared not with that 
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of the unmixed material, but with that of a mixture with the same clump repartition (same 
scale of segregation), and with complete segregation between the clumps (i.e. clumps are 
exclusively of one phase 1 or 2). The variance of such a mixture can be obtained by 
developing 0 2 ( p c )  as in (2): 

J-M Missiaen and G Thomar 

It is worth noting that equation (4) for the homogeneous mixture and equation (6) for the 
unmixed material should be able to be obtained from equation (9) as Np tends respectively to 
unity and to infinity. Tbis is not exactly the case, which shows some limits of Bosanquet’s 
model. 

With the general expression (9) for U,$, the intensity of segregation can be calculated 
using (7): 

I =  .. _ .  (10) . .  
P ( I  - P )  

It is independent of the sample size in both large-scale and small-scale segregation, and it is 
characteristic of the amplitude of the composition differences in the mixture (I = 0 for the 
homogeneous mixture, and I = 1 for the mixture with complete segregation on any scale). 

Hence, an estimate of the intensity of segregation can be obtained from a variance 
analysis of the numerical fraction in samples of size N, using equation (7), U$ and U;’ 

being determined from (4) and (9), respectively. The difficulty is that the reference U,$ 

is a function of the scale of segregation, characterized by Np, which is a priori unknown. 
In order to determine both the intensity and the scale of segregation, a multiscale variance 
analysis must be performed. The parameter M = ui/u;*, often used in the literature as a 
mixing index, can be plotted versus N. Referring to Bosanquet’s model (equations (8) and 
(9)) M should vary as follows: 

(11) 

(12) 
Hence, the intensity I of segregation may be estimated from the slope of the linear variation 
at small N-values ( ] I ) ,  and then the scale of segregation Np from the abscissa at which 
a deviation from the linear variation is obtained. Np can also be determined from the 
asymptotic limit of M (12), using the value of I calculated at small N-values. 

The calculation of Bosanquet is based on the assumption that the two contributions to 
the composition variance between samples (statistical variations in the composition, and 
dispersion of the clump compositions) can be separated. In the following, another model of 
the mixture will be considered. Under more restrictive conditions, this model allows a more 
rigorous calculation of the composition variance. W e  model of the mixture consists of a 
random arrangement of two domains Di and D,, having different compositions, lower (i) or 
greater (s) than the mean value, each domain being homogeneous (figures 1 and 2). This 
can be regarded as limited for real inhomogeneous mixtures, which may present continuous 
fluctuations of the composition. The influence of an ordered arrangement of the domains 
will also be examined. It will be seen that the results obtained are very similar to those 
derived from Bosanquet’s theory, which gives more weight to the analysis of the scale and 
intensity of segregation from the variancesample size relationship, as proposed above. 

The parameters p (the average numerical fraction of particles 1 in the mixture), pa (the 
average numerical fraction of particles 1 in the domain D. (or i or s)) and xcr (the fraction 
of the total number of particles in the domain D, (a i or s)) are related by the expression 

N << Np (large-scale segregation): M = 1 + N I  

N >> Np (small-scale sepgation): M = 1 + Npl. 

XiPi + &Ps = P .  (13) 
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Figure 1. Samples in a mixture w l h  large-scale segregation. 

Figure 2. S;mples in a mixtax with small-scale segregation: (U) domains as B rantlorn packing 
of cells: (b) ordered domains. 

2.1. Large-scale segregation 

Let us first consider that the size of the domains is large with respect to the sample size 
(figure 1). The variance of the number of particles 1 per sample has the general expression 

u~(NI) = E(N:)  - E Z ( N l )  = E(N:)  - N z p z .  (14) 
If the samples are uniformly distributed in the mixture, this becomes 

u~(NI)  = xiEi(N:) + x , E , ( N ~ )  - N Z p Z  (15) 
where Ei(N:) (or E,(N:) )  represents the expectation value of N I  in the domain Di (or D,) 
and is deduced from ( 5 )  by replacing p by pi (or p s ) :  

O ~ ( N I )  = NP(l - P )  f N ( N  - l)xixsApz = u G 2 ( N ~ )  + N ( N  - l )qx ,Ap2  (16) 
where Ap = ps - pi represents the composition difference between the two domains. The 
case of complete segregation is obtained as pi = 0 and p. = 1 and leads to equation (6) 
corresponding to the unmixed material, as expected. The intensity of segregation, as defined 
by (7), can be derived: 

I = xjx. (17) 
AP' 

P(1 - P)' 
This is the exact analogue of (lo), as ~ ' ( p , )  is simply equal to x ~ x , A ~ ~  in our model. 
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2.2. Small-scale segregation 

Let us now assume that the size of the domains is small with respect to the sample size 
(figure 2). 

2.2.1. Random arrangement of the domains. An approximate calculation will be given here 
by assuming that the mixture is a random arrangement of cells from Di and D, (figure 2(a)), 
each cell containing the same number Np of particles, and applying the analysis of Lacey to 
the cells. The variance of N I  when samples are constituted of one cell ( N  = Np particles) 
can be expressed by 

J-M Missiaen and G Thomar 

u,&(NI) =xiEi (N:)  +x&(N?)  - NpZp* (18) 

where Ei(N:)  (or E,(N:) )  represents the expectation value of N: for a cell of N p  particles 
in the domain Di (or Os) and is deduced from (5) by replacing p by pi (or p J  and N by 
Np. Equation ( 1 8 )  can then be rewritten 

& ( N I )  = Npp(1  - p )  + Np(Np - l )x ix ,Ap2.  (19) 

If the cell arrangement is disordered, the variance for samples containing Nc cells (Nc = 
N / N p )  can be deduced: 

& N I )  = N ~ U , $ ~ ( N I )  = N / N P ~ , ? , ~ ( N I ) .  (20) 

Then, by using (19). U; can be rewritten 

~ i ( N 1 )  = N p ( l  - p )  + N ( N p  - l ) x , x s A p 2  = u;'(NI) + N ( N p  - I ) x i ~ ~ A p ~ .  (21) 

As before, the case of complete segregation is obtained with pi = 0 and p s  = 1, and 
the intensity of segregation again given by (17). The case of homogeneous mixture 
(equation (4)) is obtained as NP equals unity, as expected. 

2.2.2. Ordered arrangement of the domains. Let us now suppose that the arrangement of 
the domains is ordered, with a period (representing the scale of segregation here) which is 
lower than the sampling size (figure 2(b)). Each sample will then contain the same numbers 
Ni = Nxi of particles in  the domain Di and Ns = N x ,  of the particles in the domain D,. 

The number of N I  of particles 1 in a sample is the sum of the number of particles 1 in 
Di and in D,: 

N I  = N I  + N ; .  (22) 

The distribution of particles 1 in Di and D, can be considered as independent, and hence 

u ~ ( N I )  = u , ? , ~ ( N ~ )  +u,$%(N;) .  (23) 

As Nj and N ,  are constant, equation (4) can he used for u,$,(N,) and a i s ( N l )  by 

(24) 

replacing N by Ni (or NJ and p by pi (or p s ) ,  which yields 

u i ( N 1 )  = Np(1 - p )  - Nxix6Apz  = ~ ; ' ( N I )  - N x i x s A p  2 

u,$,(Nl) is then smaller than the value u;*(Nl) of the homogeneous mixture, and the intensity 
of segregation is always given by (17). 
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2.3. Variation in 02/& with sampling size N 

Complete analysis of the intensity and scale of segregation can be made by analysing the 
variance U,?, at different sampling sizes N. 

The ratio M = u,?,/u,$ can be calculated using the previous models. For sampling sizes 
much smaller than the segregation scale, equations (16) and (4) give 

M = 1 + (N - 1)I. 

For sampling sizes much larger than the segregation scale, equations (21) and (24) are used 
for random and ordered arrangements, respectively, of the domains: 

random domains : M = 1 + (Np - 1)1 (26) 

ordered domains : M = 1 - 1. (27) 

Equations (25) and (26) are very similar to (1 1)  and (12) derived from Bosanquet's theory 
and merge into one another as N >> 1 and Np >> 1 .  The expected variation in M with N - 1 
is shown figure 3 in the case where the mixture presents a typical scale Np of segregation. 
For N-values much smaller than N p ,  the variation is linear with slope I; for N-values much 
higher than Np, M is  constant. 

"'"i 
[Random domains] 

I z 
NP N - l  

Figure 3. Expected varialion in the ratio M 
full lines are representations of the models). 

a;/a,$ with the sampling size N - 1 (only the 

The intensity of segregation can then be estimated from the slope of the first part of 
the curve. The N-values at which a deviation from the linear variation is observed gives a 
range of values for the scale of segregation. This estimation process, which does not use the 
asymptotic value of M (small-scale segregation), avoids any specification about the nature 
(random or ordered; continuous or discontinuous) of the domain arrangement. 

Extension of the method to the case of several scales of segregation is outside the scope 
of this paper. However, it could be shown that, if the scales are independent, and sufficiently 
different, the plot of A4 versus N - 1 would exhibit several linear pats, from which the 
different scales of segregation, associated with their intensity, could he determined (see 
Missiaen and Chaix (1994) for a similar analysis with the variance of the volume fraction). 
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3. Experimental procedure 

Homogeneity characterization was carried out on WO3(phase lbNiO(phase 2) mixtures. 
The purpose was to follow the evolution of inhomogeneities of the mixture versus mixing 
time for a given mixer. No attempt was made to improve homogeneity by testing different 
mixing apparatus. Powders were sieved in the 63-100 p m  size class. The value uI = 0.75 
of the WO, volume fraction was calculated to ensure a stoichiometric composition (the 
mean numerical fraction nl  of WO3 grains equals 0.75, if the size distributions of NiO and 
WO, grains are assumed identical). The densities of NiO and WO, are 6.7 g cm-, and 
7.1 g an-3,  respectively. All the powders are free flowing. The grain shapes are polyhedral 
for both oxides. 

3.1. Mixture preparation 

Powders were mixed in an epoxy-resin cylindrical crucible (h = 15 mm; d = 6 mm) placed 
in a plastic bottle which was shaken with a Turbnla rotating mixer during times from 1 s 
to several hours. A liquid epoxy resin was then slowly poured into the crucible with a 
microsyringe. After solidification for a few hours, the cylinder was cut perpendicular to 
its axis, and the section was polished. Figure 4 shows a typical section of a mixture. The 
analysed sections contained several thousand particles. 
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3.1. Mixture preparation 

Powders were mixed in an epoxy-resin cylindrical crucible (h = 15 mm; d = 6 mm) placed 
in a plastic bottle which was shaken with a Turbnla rotating mixer during times from 1 s 
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microsyringe. After solidification for a few hours, the cylinder was cut perpendicular to 
its axis, and the section was polished. Figure 4 shows a typical section of a mixture. The 
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Figure 4. Typical section o f  6 mixture 

It can be assumed that the coating process does not modify the particle packing, since 
the liquid resin is light with respect to the solids and solidifies without any volume variation. 
This has been checked on a loose packing of glass beads, which was characterized by image 
analysis after such preparation. The estimated packing fraction and 3D mean coordination 
number were 0.60 and 5.9, respectively (Missiaen 1989), values which are close to those 
which are generally admitted in literature for such packings (see, e.g., Scott (1960) and 
Bennett (1972)). Therefore, it can be concluded that the preparation process does not alter 
the packing characteristics. 

Figure 4. Typical section o f  6 mixture. 

It can be assumed that the coating process does not modify the particle packing, since 
the liquid resin is light with respect to the solids and solidifies without any volume variation. 
This has been checked on a loose packing of glass beads, which was characterized by image 
analysis after such preparation. The estimated packing fraction and 3D mean coordination 
number were 0.60 and 5.9, respectively (Missiaen 1989), values which are close to those 
which are generally admitted in literature for such packings (see, e.g., Scott (1960) and 
Bennett (1972)). Therefore, it can be concluded that the preparation process does not alter 
the packing characteristics. 
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3.2. Image analysis of the sections 

The sections were studied with aNachet NS1500 image analyser. '20 video views were made 
from each sample. WO images were thresholded from each view: one for the NiO grains, 
and one for the WO3 grains. The grains at the edge of a field were erased, whereas the 
grains inside the field were reduced to a point by homotopic marking (Coster and Chermant 
1985) so that edge effects could be avoided during further cutting out of the fields. An 
external strip, the width of which exceeded the maximum particle radius, was removed from 
each field, in order to avoid the contribution of grains at the edge (figure 5). 

Figure 5. Principle of field analysis: the grains which hit the edges are removed while the 
others are indicated by a point 

Identical square fields were then cut out in every initial field, large enough to contain a 
number of ,pins higher than a fixed value N .  By a series of erosions, keeping the square 
shape of the field unchanged, the number of grains was brought back to N in every field. 
The number of point markers of each phase could then be evaluated, and therefore the 
variance ui(N1)  of the number of WO3 grains per field. Different sampling scales were 
examined this way, and the function ui/u,$ = f ( N  - 1) plotted for each mixture. 

In order to characterize any scale of segregation in the mixture, the sampling scale 
variation must be as large as possible. The choice is that of the magnification; a compromise 
must be made to include as many grains as possible in every field, while keeping the 
resolution sufficient to be able to separate these grains easily. In our case, samples containing 
2-48 grains could be cut out from every field. The need to separate the individual grains 
means that we cannot deal with a large number of grains on the same image. So it is 
not easy to quantify a large scale of segregation (more than 50 grains) by this method. A 
variance or covariance analysis of the volume fraction can be used to increase the sampling 
size limit (Missiaen and Chaix 1994). 

4. Results 

Figure 6 presents the results obtained for different mixing times. Although fluctuations may 
be observed on the curves, a general trend can be drawn as the mixing time increases. For 
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short mixing times (less than 1 min), the ratio uz/o$ rapidly tends to values lower than 
unity. Consistently with our models, this result is a testimony of the very small scale of 
segregation, with an ordered arrangement of the domains having a short period of a few 
grains. For intermediate mixing times (1 min-1 h), a curve with a maximum is observed, 
indicating that the scale of segregation is in the interval o f  analysis, i.e. between two and 
48 grains. For longer mixing times (1-5 h), the curve is globally increasing, indicating a 
scale of segregation larger than the maximum analysed sampling size (48 grains). 

J-M Missinen and G Thomas 
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Figure 6. Experimental variation in the mixing index u$/u$ with N - 1 for different mixing 
times. 

An increase in the segregation scale with increasing mixing time is then observed. 
For mixing times longer than 1 min, the intensity of segregation can be estimated from 
equation (25) by linear regression on the increasing part of the variation. The composition 
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Table 1. The intensities of segregation and the compsition differences versus mixing time. 

1 5  - >0.39 
10 s - >OS3 

lmin 9 0.26 
10 min 3.9 0.17 
20 min 3.6 0.16 
I h  2. I 0.13 
5 h  2.4 0.13 

difference Ap is deduced with the assumption x,  = xg = 0.5 (domain of equal size). For 
mixing times shorter than 1 min, the intensity of large-scale segregation cannot be computed 
because the increasing part of the curve is too limited, but Ap can be estimated from the 
height of the asymptotic level by using (27), assuming perfect order, and hence a lower 
bound for A p  is obtained. The values given in table 1 show a global decrease in the 
intensity of segregation, i.e. a decrease in composition differences, with increasing mixing 
time. 

5. Discussion 

First, the importance of the multiscale sampling analysis of homogeneity must be 
emphasized. Let us imagine, for instance, that analysis has been performed only on a 
scale of 48 grains. An increase in the mixing index ui/ui;" with increasing mixing time 
would have been observed (figure 6). It would then have been concluded that a demixing 
of the mixture has occurred, which signifies that the mixing efficiency would become worse 
as the mixing time increases. Global analysis yields a completely different interpretation, 
as seen below. 

Indeed, an increase in the scale of segregation associated with a decrease in the intensity 
of segregation with increasing mixing time has been observed. Convection and shearing 
tend to reduce the scale of segregation. This is not evidenced in OUT case. If convection 
plays a role, it must be at the very beginning of the mixing, because a scale of segregation 
of about a few grains is observed after mixing for only a few seconds. 

In OUT case, at least for mixing times longer than 1 min. homogenization seems to be 
controlled by a kind of diffusion process, which agrees with the literature data. Indeed, 
the evolution of the concentration profile in the case of atomic diffusion is qualitatively 
comparable with that deduced from our results; it yields a decrease in the intensity of 
segregation, associated with an increase in the scale of segregation. The first effect is due 
to a decrease in the amplitude of composition differences in the mixture. The second effect 
is attributed to the progressive elimination of particle clumps by diffusion, which becomes 
more rapid as their size decreases, in this way increasing the mean scale of segregation. This 
description if of c o m e  qualitative, and estimation of the average intensity of segregation 
in a random packing of inhomogeneous clusters, by assuming that 'diffusion' obeys Fick's 
law on a microscopic scale, if far more problematic. 

It can be seen that the decrease in the intensity of segregation is slow after mixing 
for 1 h. The residual intensity of segregation (2.4%) is still important; it corresponds to a 
composition deviation Ap = 0.13, i.e. 18% of the mean value. 
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6. Conclusions 

This work presents a method which gives estimates of both the intensity and the scale of 
segregation in a binary mixture of particles. The method is based on a multiscale sampling 
analysis of the 2D numerical fraction variance. It uses a variancesample size relationship, 
which is calculated from a simple model of the mixture. This relationship looks like that 
derived by Bosanquet (a discussion in Rose 1959) with a slightly different model. The 
method was applied to the characterization of homogeneity evolution during mixing of a 
binary WO3-NiO powder mixture. After mixing for 1 min, the homogenization is controlled 
by a kind of diffusion process. The composition differences in the mixture are still important 
even after mixing for several hours. 

.I-M Missiaen and G Thomas 
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